KF8F3132——PWM 模块样例程序

引言

本应用笔记提供了 KF8F3132—PWM 模块相关的配置信息以及如何 能够快速的理解并上手使用该模块的一些配置方式。

本应用笔记须与 KF8F3132 数据手册结合使用。

寄存器

寄存器使用说明:

OSCCTL: 系统控制寄存器

寄存器OSCCTL: 系统频率控制寄存器(地址:2FH)

OPTR: 选择寄存器

寄存器6.1: OPTR: 选择寄存器(地址: 21H)

Art IV- Its	bit7					172		bit0
复位值 1111 1111	PUPH	INT0SE	T0CS	T0SE	PSA	PS2	PS1	PS0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TRO: PO 方向控制寄存器

寄存器TRO: P0口方向控制寄存器(地址: 25H)

P22-91/0000 0	bit7		11111					bit0
复位值11 1111	228	15	TRO5	TRO4	TRO3	TRO2	TRO1	TROO
	U	U	R/W	R/W	R/W	R/W	R/W	R/W

TR1: P1 口方向控制寄存器

TR1: P1口方向控制寄存器(地址: 27H)

200000000000000000000000000000000000000	bit7		E397 (E2)					bit0
复位值 11 1111	<u>=</u>	522	TR15	TR14	TR13	TR12	TR11	TR10
Secretary and the second	Ü	U	R/W	R/W	R/W	R/W	R/W	R/W

POLR: PO 口输出锁存控制寄存器

寄存器P0LR: P0口输出锁存寄存器(地址: 45H)

	bit7				_			bit0
复位值	0	2	POLR5	P0LR4	POLR3	POLR2	POLR1	POLRO
	U	U	R/W	R/W	R/W	R/W	R/W	R/W

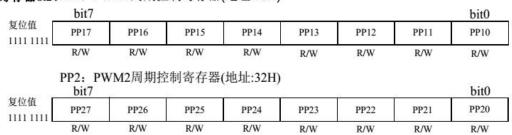
P1LR: P1 口输出锁存控制寄存器

寄存器P1LR: P1口输出锁存寄存器(地址: 47H)

	bit7		_					bit0
复位值 xx xxxx	25	823	P1LR5	P1LR4	P1LR3	P1LR2	P1LR1	P1LR0
	U	U	R/W	R/W	R/W	R/W	R/W	R/W

T0: 定时/计数器 1 寄存器

T1CTL: T1 控制寄存器


寄存器6.2: T1CTL: T1控制寄存器(地址: 10H)

	bit7									
复位值 0000 0000	TIRLD	TIGC	T1CKS1	T1CKS0	TIOSCEN	TISY	TICS	TION		
0000 0000	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

PP1: PWM1 周期寄存器

PP2: PWM2 周期寄存器

寄存器8.2: PP1: PWM1周期控制寄存器(地址:16H)

PWM1L: PWM1 占空比设置寄存器

PWM2L: PWM2 占空比设置寄存器

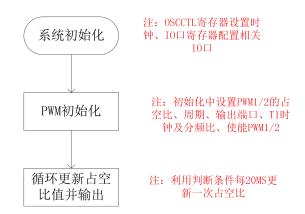
寄存器8.3: PWM1L: PWM1占空比设置寄存器(地址: 13H)

位操作使用说明:

8 位单片机支持对寄存器的位进行直接的操作,因此在使用的过程中不仅可以通过给寄存器赋值来达到想要的配置,同时还可以直接对位进行操作来达到需要的配置。

以下是对程序中使用到的位进行说明:

T1CLKEN: T1 定时模式时钟源选择位


TOIF:TO 中断标志位

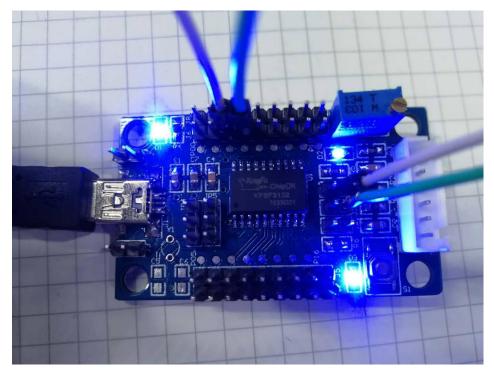
PWMPIN: PWM1/2 模块输出引脚选择位

PWM10N: PWM1 启动控制位

PWM20N: PWM2 启动控制位

PWM 样例程序框图

注: PWM 的波形可以通过示波器查看配置的输出端口来检测正确性。程序中用来更新占空比条件的代码可以查看后边的样例程序。


PWM 样例简述:

开发环境: ChipON IDE

功能简述: PWM1 和 PWM2 输出占空比互补的 PWM 波形, 频率是 10K,

输出脚是 P02, P10。每隔 20ms 占空比变化 1%, 满占空比输出后, 更新占空比为 0, 依次循环。

硬件连接: P02 接 LED2 的 JP2 端, P10 接 LED3 的 JP3 端。

图为 PWM 硬件连接循环点亮 LED 灯实物图。

PWM 样例程序:

MCU 初始化:

```
void Mcu_Init()
{
    OSCCTL =0x70;//系统时钟16M
    TR02 =0;//PWM配置为输出口
    P0LR2=0;

    TR10 =0;;//PWM配置为输出口
    P1LR0 =0;
}
```

T0 初始化:

```
void T0_Init()
{
     OPTR =0x03;//T0定时模式, 16分频
}
```

延时函数: (使用 T0 定时模式做延时)

```
void Delay_ms(unsigned int k)
{
    unsigned int i;
    for(i=0;i<k; i++)
    {
        T0=0;
        T0IF=0;
        while(!T0IF);
    }
}</pre>
```

PWM 初始化:

```
void PWM_Init()
{
    T1CLKEN =0;//T1时钟源选择Sysclk/4
    T1CTL =0x21;//T1分频器4分频, T1使能
    PP1=99;//PWM1周期设置为100us
    PP2=99;//PWM2周期设置为100us
    PWM1L=0;//占空比为0
    PWM2L=0;//占空比为0
    PWMPIN=0;//P20,P10设为PWM输出口。
    PWM1ON =1;
    PWM2ON =1;
}
```

主函数:

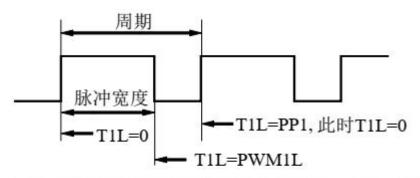
```
void main()
    unsigned char i=0;
    Mcu_Init();
    T0 Init();
    PWM_Init();
    while(1)
        Delay_ms(20);
        i=0;
         }
        else
         {
             i++;
        PWM1L=i;//占空比更新
        PWM2L =100-i;
    }
}
```

注意事项:

- 1、程序中所使用到 T0 定时器是用来做延时用的。因此未出现在框图流程中。
- 2、任何复位都会将所有端口强制为输入模式,并强制 PWM1/2 使用的寄存器进入复位状态。
- 3、PWM 周期计算方式: (PP1/2 是一个 8 位寄存器, 其值可以设置为 0~255)

4、PWM1/2 占空比计算方式:

★ 式8.3: 占空比=
$$\frac{\text{脉冲宽度}}{\text{PWM周期}} = \frac{\text{PWMxL}}{\text{PPx+1}}$$
 (x=1、2)


5、PWM1/2 分辨率计算方式:

- 6、在休眠模式下,T1 寄存器将不会递增并且模块状态保持不变。 PWM1/2 输出引脚电平保持不变(如果输出为高电平,则保持高电平,如果为低电平保持低电平)。当器件被唤醒时,T1 将从原来的状态继续工作。
- 7、PWM1/2 输出引脚可以通过 PINSET 寄存器(156H)的 PWMPIN 位选择:

PWMPIN: PWM1/2 模块输出引脚选择位

0=P0.2 作为 PWM1 的输出引脚, P1.0 作为 PWM2 的输出引脚 1=P0.0 作为 PWM1 的输出引脚, P0.1 作为 PWM2 的输出引脚

8、PWM输出波形图

T1L=PWM1L时PWM1输出变为低电平,T1L=PP1时PWM1输出变为高电平,同时将T1L清零。